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1 Introduction

The study of vortices with non-Abelian, internal orientational degrees of freedom, has

revealed beautiful connections between their moduli space dynamics and features of the

gauge theory they live in [1–4]. Typically, such classical solutions occur when the non-

Abelian gauge symmetry is spontaneously broken, and crucially, there exists a “colour-

flavour locked” global symmetry in the vacuum. A vortex solution breaking this colour-

flavour symmetry then gives rise to a continuous family of classical solutions which proves

to be useful in extracting vortex dynamics in the moduli space approximation. In this

paper we will investigate Chern-Simons vortex solitons in 2+1 dimensions, carrying non-

Abelian internal orientational zero modes. The theory we consider is a mass deformation

of the N = 6 supersymmetric ABJM theory [5] preserving all supersymmetries [6].
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Vortex solitons in Abelian and non-Abelian Chern-Simons theories have been widely

studied in both relativistic and non-relativistic settings [7–12]. Detailed reviews of these

can be found in [13, 14]. More recently, the moduli space dynamics of (supersymmetric)

non-Abelian Chern-Simons vortex solitons with internal collective coordinates, was ana-

lyzed in [15–18]. It was already noted in [19] that the Chern-Simons action induces terms

which are first order in time derivatives in the moduli space effective description of the vor-

tex. Specifically, the authors of [16, 17] demonstrated that the effect of the Chern-Simons

coupling on the moduli space quantum mechanics of SUSY non-Abelian vortices, is to in-

duce a coupling to a magnetic field F which could then be given a geometric interpretation

in terms of the first Chern character of an index bundle over the moduli space.

One of our main motivations is to study the semiclassical, solitonic objects arising in the

context of the recently discovered N = 6 superconformal ABJM theory [5] in 2+1 dimen-

sions. The theory has a U(N) × U(N) gauge symmetry with matter in the bifundamental

representation and a level (k,−k) Chern-Simons action for the gauge fields. It describes

the world-volume dynamics of multiple M2-branes moving in a C
4/Zk orbifold background

in M-theory. The ABJM proposal followed the seminal works of Bagger-Lambert [20] and

Gustavsson [21] (BLG), which first proposed the N = 8 superconformal theory on multiple

M2-branes probing flat space.

We will see that the ABJM theory, when deformed by a particular supersymmetric

mass term, admits finite energy, non-Abelian Chern-Simons vortex solitons. What makes

the situation particularly interesting is that the soliton dynamics can now be explored in

two different regimes of the field theory: one in which semiclassical analysis is valid and

another wherein the theory is strongly coupled and is described by a dual gravitational

background. The study of vortices in these two regimes, including the construction of the

classical solution and obtaining the dual gravity description at strong coupling, will be the

subject of the paper. Using these two approaches we confirm the general picture of [16, 17],

while also encountering certain unresolved puzzles.

Various nonperturbative objects have been found in BLG and ABJM theories.

Monopole instantons in ABJM theory have been studied in [22]. Vortex solitons have

been already studied in mass deformed BLG theory in [23, 24]. The solution found in [23]

has a topological winding and a mass that is twice the one found in [24]. Vortices in mass

deformed ABJM have been studied in [25]; those solutions can be interpreted as higher

winding solutions with respect to the ones that we will study in this paper. Vortices in the

non-relativistic limit of ABJM have been studied in [26].

Both the BLG theory in 2+1 dimensions and the ABJM theory admit mass deforma-

tions breaking conformal invariance, but preserving all of their supersymmetries [6, 27–30].

In particular, the maximally supersymmetric mass deformation of the ABJM theory was

obtained in [6, 30] and the analysis of its classical vacuum structure revealed a discrete set

of vacua [6]1. This deformation breaks the SU(4) × U(1) global symmetry of the ABJM

theory to SU(2) × SU(2) × U(1)A × U(1)B .

1A potential discrepancy was also noted, since the classical vacuum states of the mass deformed theory

are more numerous than expected from the supergravity dual.
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We focus our attention on one of these classical vacua which we expect to be pertur-

batively accessible for large k (and N/k ≪ 1), and we refer to this vacuum as the “Higgs

vacuum”. Here the U(N) × U(N) gauge group is broken to U(1) × U(1). We find that

this vacuum admits classical vortex solutions carrying both electric and magnetic charge.

Importantly, the Higgs vacuum exhibits a global SU(2)×SU(2)C+F ×U(1)B ×U(1)A sym-

metry, where the second SU(2) factor arises via a combination of (broken) flavour SU(2)

rotations and global gauge transformations. This colour-flavour locked transformation acts

non-trivially on our vortex solution which breaks SU(2)C+F to U(1)C+F , resulting in a

CP1 moduli space of solutions. We are able to construct the classical solutions for all N ,

and show that they have finite energy and that they are BPS. We explicitly check that the

solutions are invariant under six supercharges and are 1
2 -BPS states with a mass given by

kµ, where µ is the mass deformation parameter of the theory.

The topology of the vacuum manifold M in the Higgs vacuum is non-trivial, π1(M) =

ZN , and the vortex solitons carry a ZN charge. However, they are actually stabilized also

by a global U(1)B charge which is quantized to be a multiple of k [5], and which is not

carried by the perturbative states in the theory. Thus an N -vortex state cannot annihilate

into the vacuum. Although the vortex solution is straightforward to obtain, its low energy

dynamics on the moduli space appears technically challenging to derive from first principles.

On general grounds, at weak coupling, since the solutions preserve six supersymmetries and

the moduli space of solutions we have found is an S2, we expect the moduli space dynamics

to be governed by supersymmetric quantum mechanics on a sphere. However this leaves

unclear, the effect of the Chern-Simons terms on this quantum mechanics.

To learn more about the soliton dynamics we turn to the other parametric regime

where the mass deformed ABJM theory is tractable. This is the strongly coupled, large

N limit, namely N → ∞, with N/k large. In this limit the N = 6 superconformal ABJM

theory is dual to eleven dimensional supergravity on AdS4×S7/Zk obtained by a particular

quotient of the AdS4 × S7 solution dual to the N = 8 superconformal theory. We deduce

the gravity dual of the mass deformed ABJM theory by performing a similar quotient on

the background dual to the maximally supersymmetric mass deformation of the N = 8

superconformal M2-brane theory. The latter background, preserving N = 8 SUSY, and

SO(4) × SO(4) symmetry, was obtained in [27, 29]. In the fermion fluid language of Lin,

Lunin and Maldacena [29], the vacua of the SO(4) × SO(4), N = 8 theory are in one to

one correspondence with partitions of N and are represented by states of free fermions.

The Higgs vacuum is the trivial partition and is a highly excited particle state in the

fermion picture. This can be interpreted as the geometry generated by a dielectric M5-

brane carrying N units of M2-brane charge and wrapped on one of the two S3’s in the

SO(4) × SO(4) invariant geometry.

The quotienting of the SO(4) × SO(4) background above, by the Zk ac-

tion, yields the Higgs vacuum of the mass deformed ABJM theory, preserving an

SU(2) × SU(2) × U(1)A × U(1)B symmetry. For large k (such that N/k is fixed and

large), we can reduce the geometry to type IIA string theory. The type IIA geometry

asymptotes to AdS4 ×CP3 and contains two spheres S2 and S̃2, each associated to one of

the two SU(2) factors of the isometry group. The Higgs vacuum corresponds to a dielectric

– 3 –
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D4-brane wrapping S2 [31]. The presence of the dielectric D4-brane can also be directly

inferred from a fuzzy sphere interpretation of the classical VEVs in the Higgs vacuum [32].

The general picture bears a strong resemblance to the N = 1∗ theory [33–35], although

the geometries in the present situation are completely non-singular. Non-Abelian vortices

in the N = 1∗ theory where studied in [36, 37].

The vortex soliton in the Higgs vacuum is a D0-brane probe in the above geometry2.

Surprisingly, we find that the probe mass is minimized along a six dimensional submanifold

P, preserving the reduced set of isometries. The value of the probe mass along the moduli

space P matches the value µk deduced classically. The probe moduli space P can be viewed

as S2 × S̃2 ×S1 fibred along a segment C, where the S1 is also non-trivially fibred over the

two S2’s. The topology of a section at a generic point of the segment is S2×S3. At the two

tips of C, the three-sphere shrinks to zero 3 and the section is given by a two-sphere. We

identify the tip where the S3 obtained by fibering S1 over S̃2 shrinks as the moduli space of

vortex solutions we saw at weak coupling. The probe dynamics in this section of P is that

of a particle on S2 of radius
√

k/2 coupled to a Dirac monopole connection of strength k.

The radius of the sphere also matches that of the fuzzy sphere from the classical analysis

of the Higgs vacuum. The effect of the Chern-Simons interactions on the moduli space of

the soliton, is to induce a Dirac monopole connection. This picture is in agreement with

the general results of [16, 17]. However, the full six dimensional moduli space at strong

coupling presents a puzzle, and does not appear to have a simple interpretation in terms

of the soliton solutions we found at weak coupling.

The paper is organized as follows. In section 2, we review the essential features of the

ABJM theory and its mass deformation, their symmetries, vacuum structure and equations

of motion. Importantly, we describe the origin of the colour-flavour locked symmetry in

the Higgs vacuum. In section 3, we present our ansatz for the vortex soliton solutions for

general N and discuss their stability and verify explictly that they are left invariant by six

supersymmetries. In section 4, we turn to the gravity dual of the mass deformed ABJM

theory. We first review the basic features of the SO(4)×SO(4) symmetric solution of [27, 29]

and then explain the quotienting procedure that yields the mass deformed ABJM theory.

The D0-brane probe dynamics and its moduli space are then deduced straightforwardly.

We summarize our results and conclusions in section 5. In appendix A the vortex fermionic

zero modes are discussed for N = 2.

Note added. While this paper was being completed, a closely related preprint

arXiv:0905.1759 [hep-th] [38] appeared, which overlaps with our classical field theory anal-

ysis of the vortex solitons.

2In the D-brane picture, the dielectric D4-brane will have a B-field along its worldvolume S2 directions.

This allows a D0-brane to form a bound state with the D4, corresponding to a noncommutative U(1)

instanton in 5 dimensions, and appear as a vortex in the non-compact 2+1 dimensions.
3We thank D. Tong for drawing our attention to this.
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2 Mass deformed ABJM theory

The bosonic part of the Lagrangian of the ABJM theory [5] is given by a U(N) × U(N)

Chern-Simons theory, coupled to bifundamental matter with a scalar potential. The Chern-

Simons levels associated to the two gauge groups are +k and −k respectively. In N = 2

superspace notation the ABJM superpotential for the bifundamental matter fields reads

W =
2π

k
Tr(Q1(R1)†Q2(R2)† −Q1(R2)†Q2(R1)†) . (2.1)

where Qα and Rα transform in the (N, N̄) representation of the gauge group. The global

SU(4) R-symmetry becomes explicit upon introducing the fields

CI = (Q1, Q2, R1, R2) , (I = 1, . . . 4), (2.2)

and the bosonic part of the ABJM Lagrangian becomes

Lbosonic =
k

4π
ǫµνλTr

(

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

)

(2.3)

−Tr|DµCI |2 +
4π2

3k2
Tr
(

CIC†
IC

JC†
JC

KC†
K + CIC†

JC
JC†

KC
KC†

I+

+4CIC†
JC

KC†
IC

JC†
K − 6CIC†

JC
JC†

IC
KC†

K

)

,

which is manifestly invariant under the SU(4) R-symmetry associated to N = 6 supersym-

metry. The covariant derivatives on the bifundamental fields are defined as

DµCI = ∂µCI + iAµCI − iCIÂµ . (2.4)

The fermionic part of the Lagrangian is,

Lfermionic = −iTr(ψ†)IγµDµψI +
2πi

k
Tr
(

C†
IC

I(ψ†)JψJ − (ψ†)JCIC†
IψJ (2.5)

−2C†
IC

J(ψ†)IψJ + 2(ψ†)JCIC†
JψI + ǫIJKLC†

IψJC
†
KψL

−ǫIJKLC
I(ψ†)JCK(ψ†)L

)

.

The conventions for γ-matrices are as in [39]:

γµ = (iσ2, σ1, σ3) . (2.6)

To raise and lower spinor indices the ǫαβ symbol is used, with ǫ12 = −ǫ12 = 1. The charge

conjugation on spinors is given by ψc = ψ∗. The metric choice is gµν = diag(−1,+1,+1).

In [6], a mass deformation of the ABJM theory was found which preserves all the su-

persymmetries and breaks the SU(4)R × U(1) global symmetry down to SU(2) × SU(2) ×
U(1)A × U(1)B × Z2. The Z2 action swaps the matter fields Qα and Rα, while the SU(2)

factors act individually on the doublets {Qα} and {Rα} respectively. The U(1)A symmetry

rotates Qα with a phase +1 and Rα with a phase −1. This perturbation can be written

as a superpotential in the N = 1 superfield formalism discussed in [30]. The R-symmetry

– 5 –
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group is SU(2)×SU(2)×U(1)A. This mass deformed theory is an example of three dimen-

sional supersymmetric theory with the so called ”non-central” term in the supersymmetry

algebra [40, 41]; this means that the anticommutator of the supercharges closes not only

in a combination of momentum generators and central charges, but also in generators of

the R-symmetry. The expression in component fields is:

δLmass = µ2Tr(QαQ†
α +RαR†

α) + µ
8π

k
Tr(QαQ†

[αQ
βQ†

β] −RαR†
[αR

βR†
β]) − (2.7)

−i µTr(ξ†1ξ1 + ξ†2ξ2 − χ†
1χ1 − χ†

2χ2) ,

where ψI = (ξ1, ξ1, χ1, χ2). The scalar potential of the mass deformed theory can be written

in a compact way as

V = Tr(|Mα|2 + |Nα|2) , (2.8)

where

Mα = µQα +
2π

k
(2Q[αQ†

βQ
β] +RβR†

βQ
α −QαR†

βR
β + 2QβR†

βR
α − 2RαR†

βQ
β) ,

Nα = −µRα +
2π

k
(2R[αR†

βR
β] +QβQ†

βR
α −RαQ†

βQ
β + 2RβQ†

βQ
α − 2QαQ†

βR
β) .

It is also possible to consider the theory with gauge group SU(N) × SU(N). In this case

for N = 2 we recover the Bagger-Lambert theory [20]. The U(1)B global symmetry of

the SU(N) × SU(N) theory, is given by the baryon number (under which (Qα, Rα) have

charge +1).

In the U(N)×U(N) gauge theory the naive baryon number symmetry is gauged by a

gauge field Ab corresponding to the off-diagonal combination of the two Abelian factors in

U(N)×U(N). The remaining Abelian symmetry U(1)b̃ acts trivially on all the matter fields

and couples to the theory through the Abelian Chern-Simons interaction SCS = k
4πAb∧Fb̃.

Hence there is another U(1)B global symmetry generated by the current ∗Fb̃ which is

related by the the equation of motion for Ab to the U(1)b current,

Jµ =
k

4π
ǫµνρF

νρ

b̃
. (2.9)

The flux quantization condition on Fb̃ implies that the U(1)B charges are quantized as

integer multiples of k. In the ABJM theory, the chiral primary operators made from ele-

mentary fields, of the form Tr((CIC
†
J)ℓ), do not carry this U(1)B charge. Gauge invariant

operators carrying the quantized baryon number correspond to combinations of the form

Cnk along with ’t Hooft operators. The presence of this global charge under which elemen-

tary states are uncharged will be important for the stability of the vortex solitons we find

in the mass deformed theory below.

2.1 Vacua and symmetries

After mass deformation, the ABJM theory has several isolated classical vacua preserving

different amounts of gauge symmetry. These were obtained in [6]. As in the case of the

N = 1∗ theory in 3 + 1 dimensions [33, 34], classical vacua may be enumerated by finding

– 6 –
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block diagonal solutions to the F-term vacuum conditions. In this case, for the scalar

potential to vanish we must have

Mα = Nα = 0. (2.10)

These equations have simple solutions if we assume that either Rα = 0 or Qα = 0. In the

following we will concentrate on some configurations with Rα = 0. This choice breaks the

discrete Z2 symmetry. The potential for such configurations is

V = Tr

∣

∣

∣

∣

µQα +
2π

k
(QαQ†

βQ
β −QβQ†

βQ
α)

∣

∣

∣

∣

2

. (2.11)

We consider the following vacuum, which corresponds to an N×N irreducible solution

and we will call this the Higgs vacuum,

Q1 =

√

kµ

2π

















0

1
. . . √

N − 2 √
N − 1

















, Q2 =

√

kµ

2π



















0
√
N − 1

. . .

. . . 0√
2 0

1 0



















. (2.12)

In this vacuum the gauge symmetry is almost completely broken by the VEV,

U(N) × U(N) → U(1)b̃ × U(1). (2.13)

It is a trivial fact that the U(1)b̃ factor cannot be broken, because it couples to the other

fields of the theory just through Chern-Simons interactions. If we label the two different

gauge groups as U(N)L and U(N)R, the Higgs vacuum configuration breaks U(1)b and the

SU(N)R ⊂ U(N)R. The unbroken U(1) gauge symmetry is a particular combination of the

U(1)b with a diagonal generator of the SU(N)L gauge group which acts on Qα from the

left. All other generators of SU(N)L are broken. The unbroken generator is

KL = Diag(1, 0, . . . , 0). (2.14)

The global SU(2) symmetry acting on the doublet (Q1, Q2) is also broken.

Similar to the case of the N = 1∗ theory, the above solutions can be interpreted as

fuzzy complex coordinates, which can be decomposed into real (Hermitian) coordinates

Xp as in [39],

Q1 = X1 + iX2, Q2 = X3 + iX4. (2.15)

The Higgs vacuum configuration implies that

Q†
αQ

α = 1 (N − 1)
µk

2π
(2.16)

which formally resembles a fuzzy S3 equation. However, due to the fact that Q1 is

Hermitian implying that X2 = 0, one suspects that the configuration actually describes a

fuzzy two sphere. This latter picture has been confirmed in [32]. Qualitatively the situation

– 7 –
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is somewhat similar to the Higgs vacuum of the N = 1∗ theory characterized by such a

fuzzy sphere configuration which breaks both a global flavour symmetry and the gauge

group. There, a combination of the broken gauge and flavour generators can be shown to

generate a “colour-flavour” locked symmetry [36, 37] which leaves the VEVs invariant.

One expects therefore that the Higgs vacuum of the mass deformed ABJM theory

should have an unbroken global symmetry which is a combination of the broken gauge

transformations and the broken global SU(2) symmetry that acts on the doublet (Q1, Q2).

Indeed, we find such a colour-flavour locked global symmetry of the vacuum.

For every N , there is a special combination of the broken global symmetry and of the

broken gauge symmetry which is left unbroken by the VEV. Let us first denote the three

generators of SU(2) in an irreducible representation of dimensionm, as Ja
m (with a = 1 . . . 3)

Now consider the following SU(2) global transformation , acting on the Qα:

(

Q1

Q2

)

→ UF .

(

Q1

Q2

)

UF = exp (iαaJ
a
2 ) . (2.17)

It can be checked that such a global transformation of the VEVs can be undone by em-

bedding the global rotation into (constant) SU(N)L × SU(N)R gauge transformations:

Qα →WLQ
αW †

R (2.18)

where

WL =

(

1 0

0 exp
(

iα1J
1
N−1 − iα2J

2
N−1 − iα3J

3
N−1

)

)

, (2.19)

WR = exp
(

−iα1J
1
N + iα2J

2
N + iα3J

3
N

)

.

Note that it is only the broken gauge transformations which are involved in the colour

rotation. We denote this unbroken “colour-flavour” locked symmetry as SU(2)C+F . Thus

the Higgs vaccum of the mass deformed ABJM theory has this symmetry and excitations

around this vacuum should fall into multiplets of the SU(2)C+F symmetry. A nice expla-

nation of how this embedding of global rotations in the gauge group is made possible, is

given in [32] 4. We will be interested in vortex solitons in this vacuum and the existence

of the colour-flavour locked symmetry has interesting implications for the solitons.

2.2 Equations of motion

The classical picture for the vacuum states of the theory above and the classical solutions

we now look for, will only be valid in the weakly coupled regime which in turn implies

4As explained in [32], the set of matrices Jβ
α = 2π

µk
Q†

αQβ are generators of U(2). If we further define Ji =

(σT
i )α

β Jβ
α , it is easily checked that these satisfy SU(2) commutation relations. The Ji transform as adjoints of

the U(N)R gauge symmetry and provide an N-dimensional irreducible representation of the SU(2) algebra.

One may do the same with the matrices J̄β
α = 2π

µk
QβQ†

α and define J̄i = (σi)
α
β J̄β

α . These furnish an N − 1

dimensional irreducible representation and are adjoints under the U(N)L gauge symmetry. The action of

these generators of the gauge symmetry on the bifundamentals Qα precisely matches a global SU(2) rotation.

– 8 –
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k ≫ 1. Since the ABJM theory has no Maxwell terms for the gauge fields, the equations

of motion for the gauge field yield Gauss law type constraints. These are of the form

k

4π
ǫµνρFνρ = i

(

(Qα)(DµQα)† − (DµQα)(Qα)†
)

, (2.20)

k

4π
ǫµνρF̂νρ = i

(

(DµQα)†(Qα) − (Qα)†(DµQα)
)

,

where the field strength is defined as:

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] . (2.21)

Finally there are the second order equations of motion for the scalar fields Qα, with the

ansatz Rα = 0,

DµD
µQ1 = µW 1 +

2π

k

(

W 1(Q2)†Q2 −Q2(Q2)†W 1
)

+ (2.22)

+
4π

k
µ
(

Q1(Q2)†Q2 −Q2(Q2)†Q1
)

+

+
4π2

k2

(

Q1(Q1)†Q1(Q2)†Q2 +Q1(Q2)†Q2(Q1)†Q1 +Q2(Q2)†Q1(Q1)†Q1+

+Q1(Q1)†Q2(Q2)†Q1 − 2Q1(Q2)†Q1(Q1)†Q2 − 2Q2(Q1)†Q1(Q2)†Q1
)

,

where

W 1 = µQ1 +
2π

k

(

Q1(Q2)†Q2 −Q2(Q2)†Q1
)

, (2.23)

W 2 = µQ2 +
2π

k

(

Q2(Q1)†Q1 −Q1(Q1)†Q2
)

.

The equation of motion for Q2 is identical to this and and can be obtained from the above

by exchanging all Q1’s with Q2’s.

We will look for static, axially symmetric solutions to the above equations of motion

carrying charge under the U(1)B symmetry generated by ∗Fb̃. To this end we set the

time derivatives of Qα and Ar,ϕ to zero where (r, ϕ) are polar coordinates on the plane.

In addition we choose the gauge Ar = 0. We then get the following constraints between

(A0, Â0) and (F12, F̂12) which are particularly useful in solving for the scalar potentials,

since they are only algebraic conditions on the latter,

k

2π
F12 =

(

Qα(Qα)†A0 +A0Qα(Qα)† − 2QαÂ0(Qα)†
)

, (2.24)

k

2π
F̂12 =

(

−(Qα)†QαÂ0 − Â0(Qα)†Qα + 2(Qα)†A0Qα
)

.

These relate the non-Abelian charge densities to the magnetic flux carried by the configu-

ration, in each gauge group factor. In our vortex ansatz we can use this constraint to fix

the form of A0 once that we have fixed an ansatz for Aϕ and for Qα. Note that this is a

first order equation, but determines A0 algebraically. The second set of Gauss constraints

relate F0r to Aϕ, yielding a second order differential equation. In addition to this we also
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need to ensure that the conditions F0ϕ = 0 (and Ar = 0) emerging as a consequence of

azimuthal symmetry are consistently satisfied.

Once we obtain explicit solutions to the Lagrange equations of motion, we can compute

the mass of the soliton using the following expression for the energy density

E =

∫

d2r(|D0Qα|2 + | ~DQα|2 + V (Qα)) . (2.25)

3 Vortex in the Higgs vacuum

Let us first of all discuss the topology of the vacuum manifold

M =
SU(N)L × SU(N)R × U(1)b

U(1)unbroken
=
G

H
. (3.1)

There is a subtlety in the definition of G that we now need to note. One combination of

the centers of the SU(N)L and SU(N)R acts non-trivially on the matter fields and this

action can be undone by a ZN rotation in U(1)b. The other combination results in a ZN

centersymmetry under which the matter fields are uncharged. Due to this reason, the

fundamental group of G is given by π1(G) = Z ⊕ ZN , where the ZN factor corresponds to

non-contractible loops around which fields wind by a ZN rotation generated by the diagonal

combination of the centers of the SU(N)L and SU(N)R factors. We can then write the

homotopy exact sequence:

. . .→ π1 (H) → π1 (G) → π1 (G/H) → π0 (H) → . . .

. . . → Z → Z ⊕ ZN → π1(M) → 0 → . . .

From a straightforward application of the properties of the homotopy exact sequence, it

follows that

π1(M) = ZN . (3.2)

The vortex solitons are classified by a ZN topological quantum number; if we take

a configuration made of N elementary vortices, they are not in principle any more

topologically stable.

From the topological point of view, a configuration made by N vortices actually corre-

sponds to a trivial element of π1(M). However, there is another quantum number that can

make the N -vortex configuration stable. As we have explained above, in the U(N)×U(N)

gauge theory, the perturbative states of the theory are not charged under the U(1)B global

symmetry defined by the current in eq. (2.9). The vortex solitons we find will be charged

under this symmetry and for this reason protected from decaying to the perturbative states.

The U(1)B charge carried by these vortices is measured by the magnetic flux associated to

∗Fb̃, carried by the soliton. These vortex solitons can also be thought of as states created

by the ’t Hooft monopole operators in the Higgs vacuum of the mass deformed theory.

See [43] for a discussion of the corresponding operators in conformal field theories.

In this section we will write an explicit ansatz for the elementary vortex in the U(N)×
U(N) theory. The vortex solutions in the SU(N) × SU(N) theory can be obtained by

simply projecting out the abelian part from the gauge fields (Aµ, Âµ).
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3.1 Vortex solution for U(2) × U(2)

We begin with the simplest example with N = 2. In this case the solution that we find

is very similar to the one found in [24] in the mass-deformed Bagger-Lambert-Gustavsson

theory, which, for N = 2 corresponds to ABJM theory with gauge group SU(2)×SU(2) [44].

The vortex ansatz should be axially symmetric in two dimensions and the scalar field VEVs

should asymptote to the Higgs vacuum. We therefore take the ansatz,

Q1 =

√

µk

2π

(

0 0

0 1

)

, Q2 =

√

µk

2π

(

0 0

eiϕψ(r) 0

)

. (3.3)

where the second scalar winds around origin. The ansatz breaks completely, the SU(2)R ⊂
U(2)R gauge symmetry which acts from the right. A combination of the diagonal generator

of SU(2)L with U(1)b is however, preserved, while all fields are neutral under U(1)b̃ . The

vacuum manifold

M = (SU(2)L × SU(2)R × U(1)b)
/

U(1) (3.4)

has the fundamental homotopy group, π1(M) = Z2. However, as we have already noted,

the solutions with generic winding numbers are stable due to the global U(1) charge asso-

ciated to the symmetry generated by the current ∗Fb̃.

The spatial components of Aµ are

Âi = Ai =
ǫijxj

r2
(1 − f(r))

12 − σ3

2
=
ǫijxj

r2
(1 − f(r))

(

0 0

0 1

)

, (3.5)

from which follows that the magnetic fluxes are

F12 = F̂12 =
f ′

r

12 − σ3

2
=
f ′

r

(

0 0

0 1

)

. (3.6)

Computing the charge associated to the U(1) symmetry generated by the current ∗Fb̃, we

find
∫

d2x
k

2π
ǫ0ijF

ij

b̃
= k, (3.7)

as expected for a state created by a ’t Hooft operator. The scalar gauge potentials

(A0, Â0), are then determined by the constraints in eq. (2.24), and are given by,

A0 = − f ′

µ r

12 − σ3

4
= − f ′

2µ r

(

0 0

0 1

)

, (3.8)

Â0 = − f ′

µ r

12 + σ3

4
= − f ′

2µ r

(

1 0

0 0

)

.

Inserting the above ansatz into the equations of motion, we get the following equations

for the vortex profile functions f(r) and ψ(r),

ψ′′ +
ψ′

r
− f2ψ

r2
− 2µ2ψ(ψ2 − 1) = 0 , (3.9)
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f ′′ − f ′

r
+ 4fµ2ψ2 = 0 ,

(f ′)2

4r2µ2
− µ2

(

ψ2 − 1
)2

= 0 .

These equations are consistent and any two can be used to derive the third. In fact they

follow from first order BPS equations. The BPS equations can be obtained by considering

the energy functional

E =
kµ3

2π

∫

2πr dr

(

1

4µ4

(f ′)2

r2
+

1

µ2

(

f2ψ2

r2
+ (ψ′)2

)

+ (ψ2 − 1)2
)

. (3.10)

Rearranging various terms we find the Bogomol’nyi completion,

E = k

∫

2πr dr



2

(

f ′

4r
√
µπ

− µ3/2(ψ2 − 1)

2
√
π

)2

+

(

ψ′ − fψ

r

)2 µ

2π



+ (3.11)

+kµ

∫

dr ∂r

(

f(ψ2 − 1)
)

.

The first order equations obeyed by BPS solutions are equivalent to the three equa-

tions (3.9) which are then automatically satisfied.

We further note that, even though this is physically a Chern-Simons vortex, the equa-

tions for the profiles are formally the same as the ones for the BPS Abrikosov-Nielsen-Olesen

vortex [42]. The magnetic field has a maximum at the origin, unlike the conventional

Chern-Simons vortex. The BPS vortex mass is

T = kµ . (3.12)

Importantly, it is straightforward to check that the solutions above are left invariant

by the action of a U(1) subgroup of the colour-flavour locked symmetry SU(2)C+F in the

Higgs vacuum. The unbroken U(1)C+F is generated by the combined action of the diagonal

generator (proportional to σ3) of the gauge SU(2)R and that of the SU(2) R-symmetry

which acts on the doublet {Qα}. Hence the soliton is endowed with an internal moduli space

CP1 ≃ SU(2)C+F /U(1)C+F . (3.13)

Acting on the vortex with the broken generators of SU(2)C+F generates new solutions and

changes the orientation of the non-Abelian flux within the SU(2)R gauge group factor.

Note that this does not change the global charge under ∗Fb̃.

3.2 Vortex solution for U(3) × U(3)

We now exhibit the explicit ansatz and solution for the N = 3 case. This will provide some

intuition for how to obtain the general solution. The ansatz for the bifundamental scalars

approaching the Higgs vacuum at infinity is

Q1 =

√

µk

2π







0 0 0

0 1 0

0 0
√

2






, Q2 =

√

µk

2π







0 0 0√
2κ(r) 0 0

0 eiϕψ(r) 0






, (3.14)
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where we have introduced one additional real profile function κ for the scalar that winds

around the origin. We find that κ remains non-vanishing for all r. The spatial vector fields

have the form,

Âi = Ai =
ǫijxj

r2







0 0 0

0 −g(r) 0

0 0 1 − f(r)






, (3.15)

whilst the scalar gauge potentials are chosen to satisfy the Gauss law constraints:

A0 = − 1

4rµ







0 0 0

0 f ′ + 2g′ 0

0 0 f ′






, Â0 = − 1

4rµ







f ′ + 2g′ 0 0

0 f ′ 0

0 0 0






. (3.16)

The function f approaches unity at r = 0 and vanishes as r → ∞. On the other hand, the

profile function g(r) is zero both at r = 0 and at r → ∞, and thus does not influence the

flux carried by the solution.

It is possible to obtain first order BPS equations for the ansatz by expressing the vortex

energy energy functional as a sum of squares. The energy functional

E =
kµ

2π

∫

2πr dr

(

(f ′)2 + 2(g′)2

8r2µ2
+ (ψ′)2 + 2(η′)2 +

(f − g)2ψ2 + 2g2κ2

r2

+2µ2(ψ2 − 1)2 + µ2(ψ2 − 2κ2 + 1)2
)

. (3.17)

It is fairly easy to the infer the Bogomol’nyi completion which implies first order BPS

equations,

E =

∫

2πr dr

(

k

8πµ

(

2µ2(1 − 2κ2 + ψ2) +
g′

r

)2

+
k

16πµ

(

4µ2(ψ2 − 1) − f ′

f

)2

+

+
kµ

2π

(

ψ′ − (f − g)ψ

r

)2

+
kµ

π

(

κ′ − gκ

r

)2
)

+ (3.18)

+kµ

∫

dr ∂r

(

f(ψ2 − 1) + g(2κ2 − ψ2 − 1)
)

.

The system of fist order BPS equations can be solved numerically; the result is shown in

figure 1. The new function g does not influence the mass of the soliton since it vanishes

both at the origin and at infinity. Hence the vortex mass is again:

T = kµ . (3.19)

It is straightforward to check that the gauge theory equations of motion are satisfied.

3.3 Vortex solution for U(N) × U(N)

It is now straightforward to write the soliton ansatz for generic N . The field Q1 is taken

to be constant and equal to its VEV in the Higgs vacuum eq. (2.12). The non-zero entries

of Q2 are parameterized as:

(Q2)N,N−1 =

√

µk

2π
eiϕ ψ(r) (Q2)N−j,N−j−1 =

√

µk

2π

√

j + 1κj(r) , (3.20)
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Figure 1. The vortex profile for N = 3. Left: ψ (solid), κ (dashes). Right: f (solid), g (dashes).

with j = 1, 2, . . . N − 2. The new radial profile functions will generically be non-zero whn

solved for. An additional set of N − 1 functions is also necessary for the gauge fields,

Ai = Âi =
ǫijxj

r2
Diag (0,−gN−2(r), . . . ,−g1(r), 1 − f(r)) . (3.21)

Of these, only f(r) influences the net magnetic flux, since the gℓ vanish at the origin and

at infinity. The time component of the gauge fields are given by:

A0 =
−1

2µ r
Diag



0,
f ′

N−1
+

N−2
∑

j=1

g′j
N−1−j ,

f ′

N−1
+

N−3
∑

j=1

g′j
N−1−j , . . . ,

f ′

N−1



 ,

Â0 =
−1

2µ r
Diag





f ′

N−1
+

N−2
∑

j=1

g′j
N−1−j ,

f ′

N−1
+

N−3
∑

j=1

g′j
N−1−j , . . . ,

f ′

N−1
, 0



 .

(3.22)

We have then to write 2(N − 1) first order BPS equations for these profile functions. From

our solutions for N = 2 and 3, we conclude that the BPS solutions satisfy the equations,

D0Q
1 − iW 1 = 0 , D1Q

2 + iD2Q
2 = 0 . (3.23)

These equations lead to first order differential equations for the profile functions. The

following set of equations is also trivially satisfied by our ansatzë,

D1Q
1 = 0 , D2Q

1 = 0 , D0Q
2 = 0 , W 2 = 0 . (3.24)

Below, for completeness we list the first order equations of motion for general N ,

f ′

r
+ 2 (N − 1)µ2 (1 − ψ2) = 0 ,

g′1
r

+2(N−2)µ2(1+ψ2−2κ2
1) = 0 ,

g′j
r

+2(N−1−j)µ2(1+jκ2
j−1−(j+1)κ2

j ) = 0 , 2 ≤ j ≤ N − 2 . (3.25)

ψ′ − (f − g1)ψ

r
= 0 , κ′j −

(gj − gj+1)κj

r
= 0 (1 ≤ j ≤ N − 3) , (3.26)

κ′N−2 −
gN−2 κN−2

r
= 0 .

It is straightforward to check that in general

T = kµ . (3.27)
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The global SU(2)C+F for the Higgs vacuum is broken by the vortex soliton to U(1)C+F .

This latter symmetry is generated by a combination of the diagonal R-symmetry generator,

along with the generator proportional to (0, J3
N−1) of the SU(N)L gauge group and the

generator J3
N of the SU(N)R gauge group factor. Therefore, the vortex soliton for general

N also has a CP1 moduli space for its internal orientational degrees of freedom.

3.4 BPS conditions and supersymmetry check

In supersymmetric theories, the vortex first order equations are usually related to some

amount of preserved supersymmetry (see [12] for a discussion in the case of the U(1)

Chern-Simons vortex). In the case at hand we will see that our solutions preserve one half

of the supersymmetries of the full N = 6 supersymmetric mass deformed theory. To check

the supersymmetry variations around the soliton vortex solutions we will need the general

SUSY variations of the mass deformed ABJM theory. The supersymmetry transformations

of the mass deformed theory differ very slightly from those of the conformal theory. We

follow the notation of [45] for the N = 6 SUSY transformations of the ABJM theory and

infer the effect of the mass deformation from the work of [30]. Let us check how many

supersymmetries are preserved by the vortex solution.

In order to parameterize the N = 6 supersymmetries, let us introduce 6 Majorana

real spinors ǫi (i = 1, . . . , 6) and use them to define ωAB, the spinor valued totally

antisymmetric tensor of SU(4),

ωAB = ǫi(Γ
i)AB , ωAB = ǫi((Γ

i)∗)AB , A,B = 1, . . . 4. (3.28)

Here Γi are SO(6) gamma matrices, represented as a set of anti-symmetric matrices [45];

the conventions for the fermionic part of the lagrangian are the same as in [39]. The explicit

expression for ωAB is

ωAB = ǫkΓ
k
AB =











0 −ǫ6 − iǫ5 ǫ3 + iǫ4 −ǫ2 − iǫ1
ǫ6 + iǫ5 0 ǫ2 − iǫ1 ǫ3 − iǫ4
−ǫ3 − iǫ4 −ǫ2 + iǫ1 0 ǫ6 − iǫ5
ǫ2 + iǫ1 −ǫ3 + iǫ4 −ǫ6 + iǫ5 0











. (3.29)

With these conventions ω41 = ω∗
23, ω31 = ω∗

42 and ω43 = ω∗
12. These provide a parametriza-

tion of the SUSY variations of the SU(4) R-symmetry invariant ABJM theory.

The N = 6 SUSY transformations then read,

δψE = γµωEFDµC
F +

2π

k

(

−ωEF (CGC†
GC

F − CFC†
GC

G) + 2ωGHC
GC†

EC
H
)

+

+µ
(

M F
E ωFGC

G
)

, (3.30)

M F
E = Diag(−1,−1, 1, 1),

δAµ = −2π

k
(CE(ψ†)F γµωEF + ωEFγµψEC

†
F ) ,

δÂµ =
2π

k
((ψ†)ECFγµωEF + ωEFγµC

†
EψF ) , δCE = iωEFψF .
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The matrix M F
E breaks the SU(4) R-symmetry to SU(2) × SU(2) and implements the

mass deformation. On our solutions which have Rα = 0, the SUSY variations of the four

fermionic fields become

δψ1 = γµω12DµQ
2 − ω12W

2 , (3.31)

δψ2 = γµω21DµQ
1 − ω21W

1 , (3.32)

δψ3 = γµω31DµQ
1 + γµω32DµQ

2 + ω31W
1 + ω32W

2 , (3.33)

δψ4 = γµω41DµQ
1 + γµω42DµQ

2 + ω41W
1 + ω42W

2 . (3.34)

It is straightforward to check that, provided the equations (3.23), (3.24) are satisfied,

the following 6 SUSY generators are unbroken:

ω12 =

(

i

1

)

α1 , ω32 =

(

i

1

)

α2 , ω42 =

(

i

1

)

α3 , (3.35)

where α1,2,3 are three complex grassmann numbers. The vortex soliton is a 1/2 BPS object

preserving six supercharges.

It is important to stress that the ones in eq. (3.35) are the unbroken supercharges for a

vortex oriented in a specific direction in the SU(2)C+F space. What we are calling SU(2)F
is an R-symmetry of the theory and is acting in a non-trivial way on the paremeters ωAB,

rotating the indices A,B = 1, 2 as an SU(2) doublet and acting trivially on A,B = 3, 4.

As a consequence, if we rotate the vortex in the SU(2)C+F space, we are changing the set

of the supercharges that are left unbroken by the vortex.

3.5 Comments on the vortex effective theory

In this section we have found a classical vortex solution for arbitrary k,N with minimal

winding. This object breaks spontaneosly the SU(2)C+F symmetry to U(1)C+F . Due to

this reason, acting with the broken symmetry we can build an S2 = SU(2)C+F /U(1)C+F

moduli space of classical vortex solutions. Our classical analysis above is valid when k ≫ 1,

for fixed N , when the theory is weakly coupled5. In the large N limit, the semiclassical

solutions can be trusted provided the ’t Hooft coupling λ = N/k ≪ 1.

In the next section we will see that the gravity dual, which should be a good description

of the physics at large λ, suggests that this is not all of the story. With this other approach a

larger internal bosonic moduli space with dimension six is found for the elementary vortex.

A possible interpretation of this result is that our ansatz in field theory is not general

enough to accomodate the most general vortex solution. In our calculation we keep always

the scalars Rα = 0; it is possible that a more general solution with non-zero Rα exists.

Another possible interpretation is that the extra four dimensions of the moduli space found

in the string theory dual are an artifact of the strong coupling limit and of the supergravity

approximation. We believe that the former of the two options is unlikely, as, after a fair

5 The U(N) × U(N) theory with k = 1, 2 is supposed to have enhanced supersymmetry and global

symmetry; of course in this regime we cannot trust the semiclassical approximation. Also the case with

SU(2)×SU(2) gauge symmetry, which corresponds to the Bagger-Lambert theory, is different because there

are extra global symmetries and supersymmetries.
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amount of study, we were unable to arrive at a reasonable possible ansatz for a more general

solution. In order to solve the issue a detailed analysis of the bosonic zero modes of the

solution along the lines of [46] should be performed. This analysis is not so straighforward,

because we have first to guess the form of the generalized BPS equations, which are not

completely obvious in this case. We leave this issue as a topic for further investigation.

Let us denote with R the vortex internal moduli space (R will include at least the S2

moduli space that we have discussed in this section). The vortex dynamics is then described

by an effective quantum mechanics with target space R. The effective one dimensional

sigma model involves not only second order term in the vortex velocities (the moduli space

metric), but also first order term (which can be regarded as effective magnetic fields on

the moduli space). These first order terms are a common feature of soliton dynamics in

Chern-Simons theories [16, 19]. If R = S2, we expect that the vortex dynamics is described

by the quantum mechanichs of a charged particle on a 2-sphere in the background of the

field of a magnetic monopole [47]. This basic picture appears to be confirmed by our study

of the dual gravity picture in the next section.

Since our solitons are BPS objects and preserve some of the supersymmetries of the

theory, we expect that the bosonic internal orientation moduli will be accompanied by

fermionic super-orientational zero modes. Monopole quantum mechanics with different

amounts of supersymmetries have been studied in [48] and [49]. The vortex solutions that

we have discussed in this section are 1/2 BPS objects and so preserves 6 supercharges.

There is a subtle issue about the vortex worlsheet theory. If the action of the SU(2)C+F

symmetry on the supercharges would have been trivial, we would expect that the vortex

dynamics was described by an S2 quantum mechanics with 6 supercharges. Here the

situation is different: only two of the six unbroken supercharges, the ones with

ω12 = −ω21 = ω∗
43 = −ω∗

34 =

(

i

1

)

α1

(and all the other entries ωAB vanishing), are left unchanged by a generic SU(2)C+F trans-

formation. So we expect that the effective quantum mechanics that describes the vortex

has only two supercharges.

A related question is the number of fermionic zero modes on the vortex background.

This is discussed in appendix A forN = 2. We find a total of eight real fermionic zero modes

is found, of which, only six are generated by the action of the broken supercharges. The

issue of the vortex effective theory is rather tricky. The N = 6 mass deformed theory that

we are considering has non-central extensions in the supersymmetry algebra [40, 41] (which

means that the anti-commutator of some of the supersymmetry generators closes not only

into a combination of translations and central charges, but also or R-symmetry generators).

A description of the relevant supersymmetry algebra is given in [50]. Let us first intro-

duce the mass deformed N = 4 SUSY algebra. It consists of the Lorentz transformations

Lαβ , the momentum generators Bαβ , the SU(2)×SU(2) R-symmetry generators Rab = Rba

and Ṙȧḃ = Ṙḃȧ, and eight supercharges Qαbċ. The anticommutator of the supercharges is:

{Qαbċ,Qδeḟ} = ǫbeǫċḟBαδ − 2mǫαδǫċḟRbe + 2mǫαδǫbeṘċḟ . (3.36)
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The N = 6 algebra, which is the relevant one for our problem, has four additional super-

symmetries Q̃±
α , an extra U(1)A R-symmetry B̃ and a central charge C̃. The non-trivial

commutation relations are:

[B̃, Q̃±
α ] = ±Q̃±

α , {Q̃+
α , Q̃−

β } = Bαβ − imǫαβ C̃ . (3.37)

The central charge C̃ is given by the U(1)B symmetry.

The vortex is a 1
2 BPS objects and so we expect that it comes in a short N = 6

multiplet [50, 51], which consists of four bosons and four fermions. This multiplet of eight

states should be generated (via a Jackiw-Rebbi mechanism) by the three complex fermionic

zero modes that correspond to broken supercharges. The other extra complex fermionic

zero mode is then interpreted as the superpartner of the internal S2 bosonic coordinate.

This shows that for N = 2 there is no evidence of extra bosonic internal coordinates, which

(if they existed) should have had fermionic super-partners. It might be that the situation

changes for larger N , but we find this unlikely.

4 Gravity dual of the mass deformed theory

At any finite k, the ABJM theory has the interpretation of N M2-branes probing a C
4/Zk

orbifold singularity [5]. In the large N , strong coupling limit, this allows to identify the

gravity dual as eleven dimensional supergravity on AdS4 × S7/Zk, with N units of four-

form flux. Viewing the S7 as a Hopf fibration of S1 over CP3, at large k, a reduction to

type IIA string theory becomes possible. Then the gravity dual of the ABJM theory in

the ’t Hooft large N limit, as k → ∞, with λ = N/k fixed and large, is the type IIA string

theory on AdS4 × CP3 [5]. The background has N units of Ramond-Ramond four-form

flux on AdS4 and k units of two-form flux on a CP1 ⊂ CP3.

We will adopt a similar approach to obtain the gravity dual of the mass deformed

ABJM theory. This is a two step process. First we recall the results of Lin, Lunin and

Maldacena (LLM) [29] and those of Bena and Warner [27], for the mass deformation of

the theory on N M2-branes probing flat space. The large N gravity dual of that theory

(with a large set of vacuum states) is given by the SO(4)×SO(4) symmetric LLM solutions

of [29]. We will take this gravity solution and perform a Zk quotient on it to yield the

mass deformed ABJM theory for generic k. Subsequently we will reduce this to a type IIA

solution in the limit of large k and investigate the dynamics of vortices in this strongly

coupled description.

4.1 The background for k = 1

For k = 1, which is the mass deformed theory on a large N number of M2-branes, the dual

eleven dimensional metric in the notation of [29], takes the form

ds211 = e4Φ̃/3(−dt2 + dw2
1 + dw2

2) + e−2Φ̃/3
(

h2 (dx2 + dy2) + yeG dΩ2
3 + ye−G dΩ̃2

3

)

,

e2Φ̃ =
1

h2 − V 2
1 (x, y)/h2

,
1

h2
= 2y coshG , 2 z(x, y) = tanhG. (4.1)
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The functions z and V1 on the x − y plane are specified by a choice of the positions of

M5-branes wrapping one or the other of the two S3’s in the geometry. The distribution

of wrapped M5-branes picks out a particular vacuum of the mass-deformed M2-brane

theory. The wrapped M5’s arise as usual due to the deformation which blows up multiple

M2-branes into fivebranes.

Let us make a few technical remarks in order to make contact with the notation used

in [27] by Bena and Warner. In [27], the coordinates (x, y) are replaced by (u, v). The

relation between the two choices of variables is the following:

x = 4L2(u2 − v2) , y = 8L2uv , (4.2)

where L is a constant that corresponds to the scale of the mass deformation. Further,

the solution in [27] is given in term of a function g(u, v); the relation between g and the

function z(x, y) used above [29] is,

∂xg = −1

4

(

z − x

2
√

x2 + y2

)

. (4.3)

Finally, the constant β2 in [27] has to be set equal to 1/8 in order to obtain the non-singular

solutions discussed in [29].

For the sake of completeness let us also write down the three form potential in this

background,

C3 = −e
2Φ̃V1

h2
dt ∧ dw1 ∧ dw2 + A dΩ2 ∧ (dλ+ dϕ) + B dΩ̃2 ∧ (dλ− dϕ) . (4.4)

The functions A and B are then more straightforward to write in the Bena-Warner

notation [27],

A =
1

β

(

g − L2u(u2 + v2)(∂ug)

2L2v2 − v(∂vg) + u(∂ug)

)

, (4.5)

B = − 1

β

(

g − L2v(u2 + v2)(∂vg)

2L2u2 + v(∂vg) − u(∂ug)

)

,

where β = 1/
√

8.

The vacuum of the mass-deformed M2-brane theory is specified by the choice of the

functions z(x, y) and V1(x, y). In particular, since the Higgs vacuum in the field theory

corresponds to an irreducible representation for the N × N matrices giving VEVs to the

bifundamental matter fields, we expect that there is a single dielectric M5-brane made from

blowing up the N M2-branes. In the large k limit, where the semiclassical analysis of the

ABJM theory holds, we saw a fuzzy two sphere structure [32] which can be interpreted as

N D2-branes polarized into a single wrapped D4-brane in type IIA theory. When lifted

to M theory this becomes a single M5-brane. In the free fermion picture of [29], this is

represented as in figure 2 as a black strip, corresponding to a highly energetic particle

state. The position of the strip on the x-axis and its width are dictated by the number of

M2-branes and the number of wrapped M5’s.
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Figure 2. The Higgs vacuum is given by one wrapped dielectric M5-brane which translates to a

highly energetic particle in the fermion fluid picture.

The strip in figure 2 represents a section of the geometry at y = 0. The vertical axis is

the coordinate x. In the black region the first sphere S3 shrinks to zero size. Similarly, in

the white region the second sphere S̃3 shrinks to zero. At the boundary of the white and

the black regions, both the three-spheres shrink. Let us denote with (a, b) the position of

the lower and upper bounds of the black strip in figure 2. In term of the function z(x, y)

this means that,

z(x, y = 0) =
1

2
, for 0 < x < a and x > a+ b , (4.6)

− 1

2
, for a < x < a+ b and x < 0 .

We can consider arcs in the (x, y) plane that enclose a black or a white strip (see for

example the arcs 1 and 2 in figure 2) and construct a four-sphere by taking one of these

arcs and tensoring with the S3 that shrinks to zero at the tips of the arc. The flux of F4

over each of these four-spheres is equal to the thickness of the strip enclosed by these arcs.

For this reason the thickness of each strip must be an integer.

The fluxes on the four-spheres that are enclosed by the arcs 1 and 2 are proportional

to (b−a) and a, respectively. If (b−a) ≪ a, we may think of the first S4 (constructed using

arc 1) as being transverse to the M5-branes. Then (b − a) corresponds to the number of

M5-branes which are blowing up on a three-sphere. The second S4 arises in the following

way. Let us consider the three-sphere that the M5-branes are wrapping. At the center of

the space this three-sphere is contractible. As we move away from the center towards the

M5’s, the backreaction of the branes on the geometry makes the S3 contract again. This

produces the S4 which is enclosed by the arc 2 in figure 2. The product of the two F 4

fluxes is the total M2-brane charge.

The Higgs vacuum configuration is given by the following solutions for z and V1,

z =
1

2

(

x
√

x2 + y2
− x− a
√

(x− a)2 + y2
+

x− b
√

(x− b)2 + y2

)

, (4.7)

V1 =
1

2

(

1
√

x2 + y2
− 1
√

(x− a)2 + y2
+

1
√

(x− b)2 + y2

)

, a = N ′ , b = N ′ + 1,

where N ′ is the M2-brane charge. In the notation of [27] where the solutions are written
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in terms of the function g, (see eq.(4.3)),

g =
−
√

(x− b)2 + y2 +
√

(x− a)2 + y2

8
. (4.8)

We can also consider more general solutions, with an arbitrary number of black strips,

z =
1

2

(

x
√

x2 + y2
+
∑

i

x− bi
√

(x− bi)2 + y2
− x− ai
√

(x− ai)2 + y2

)

, (4.9)

V1 =
1

2

(

1
√

x2 + y2
+
∑

i

1
√

(x− bi)2 + y2
− 1
√

(x− ai)2 + y2
+

)

,

where (ai, bi) are the positions of the lower and upper bounds of each of the strips. On

the field theory side, these correspond to other vacua of the theory. The full set of strip

configurations with a fixed M2-brane charge N ′, can be classified by Young tableau with

N ′ boxes. Their total number is given by the number partitions of N ′. As pointed out

in [6], there is a mismatch between this and the number of vacua in the classical field

theory. The solution to this puzzle is still unknown. It is possible that this is due to the

fact that not all vacua of the theory can be realized within the supergravity approximation.

Another option is that quantum effects may possibly break supersymmetry in some of the

classically visible vacua of the mass-deformed ABJM theory.

4.2 Zk quotient and reduction to type IIA

In this section we perform a Zk quotient of the k = 1 solution. In order to keep the number

of M2-branes fixed and equal to N , we have to set N ′ = kN .

Let us parameterize the eight directions transverse to the M2-branes, in terms of the

four complex coordinates zi, (i = 1, . . . 4),

z1 = u sin η ei(λ+θ+ϕ) , z2 = u cos η ei(λ−θ+ϕ) , (4.10)

z3 = v sin η̃ ei(−λ+θ̃+ϕ) , z4 = v cos η̃ ei(−λ−θ̃+ϕ) .

In this parametrization, the metrics for the two three-spheres in the eleven dimensional

background (4.1) are,

dΩ2
3 = dη2 + sin2 2η dθ2 + ((dλ+ dϕ) − cos 2η dθ)2, (4.11)

dΩ̃2
3 = dη̃2 + sin2 2η̃ dθ̃2 + ((dλ− dϕ) + cos 2η̃ dθ̃)2.

So each S3 is viewed as a Hopf fibration of an S1 over S2, and the background has an

SO(4)×SO(4) isometry, acting naturally on the three-spheres. The mass deformed ABJM

theory should only retain an SU(2)× SU(2)×U(1)×U(1) isometry. This can be achieved

by an appropriate quotient action on a linear combination of the two S1’s, namely the ϕ

coordinate. The Zk quotient we perform, acts on the coordinates as

zj → zj e
i 2π

k , ϕ→ ϕ+ 2π/k. (4.12)
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Hence in the limit k → ∞, the period of the angular coordinate ϕ shrinks and we may pass

to the weakly coupled type IIA description. To implement this, it is useful to first perform

a rescaling ϕ→ ϕ/k, and then write the eleven dimensional metric as

ds211 = e4Φ̃/3(−dt2 + dw2
1 + dw2

2) + e−2Φ̃/3

[

h2(dx2 + dy2) + yeG(dη2 + sin2 2ηdθ2)

+ye−G(dη̃2 + sin2 2η̃ dθ̃2) +
2y

coshG

(

dλ− 1

2
cos 2η dθ +

1

2
cos 2η̃ dθ̃

)2

(4.13)

+2y coshG
1

k2
(dϕ + k ω)2

]

,

Here ϕ has period 2π and ω is the one-form,

ω = tanhGdλ− eG

2 coshG
cos 2η dθ − e−G

2 coshG
cos 2η̃ dθ̃. (4.14)

This metric has the manifest SU(2) × SU(2) isometry of the two spheres, and the two

U(1) isometries corresponding to shifts of ϕ and λ. We see below that when we focus

on a specific vacuum of the mass deformed theory, the resulting metric asymptotes to

AdS5 × S7/Zk as it should.

With this choice of the vacuum we can now determine some features of the geometry

including the large r =
√

x2 + y2 asymptotics. As r → ∞, we find

e−2Φ̃ ≃ Nk

r3
, h2 ≃ 1

2r
, eG ≃ cotψ, (4.15)

so that the metric asymptotes to AdS4 × S7/Zk

ds211 ≃ r2

(Nk)2/3
(−dt2 + dw2

1 + dw2
2) + (Nk)1/3 dr

2

2 r2
+ 2(Nk)1/3ds2S7/Zk

. (4.16)

Subsequent reduction to type IIA in the large k limit will give the AdS4×CP3 background

of [5].

Let us quickly sketch how to pass from the eleven dimensional description to the 10-

dimensional type IIA one. Writing the metric as

ds2 = G10
mndx

mdxn + e2γ(dx11 −Amdx
m)2 , (4.17)

then the scalar e3γ is proportional to the string theory dilaton e2φ. Comparing with our

eleven dimensional background, we conclude that

eφ = e−Φ̃/2 (k h)−3/2 . (4.18)

It is easy to check that the dilaton is bounded and therefore small everywhere, for large

enough k. In addition, the dilaton vanishes at x = a = Nk and x = b = Nk + 1.
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Finally, we can write the string frame metric as,

ds2string = e2φ/3G10
mndx

mdxn (4.19)

= eΦ̃(hk)−1
(

−dt2 + dw2
1 + dw2

2

)

+ e−Φ̃(hk)−1

[

h2(dx2 + dy2)

+yeG(dη2 + sin2 2ηdθ2) + ye−G(dη̃2 + sin2 2η̃ dθ̃2)

+
2y

coshG

(

dλ− 1

2
cos 2η dθ +

1

2
cos 2η̃ dθ̃

)2 ]

.

and the Ramond-Ramond one-form potential C1

C1 = k ω (4.20)

where ω is the one-form defined in eq.(4.14). The type IIA background will also have

a B2 Neveu-Schwarz potential switched on and a three-form Ramond-Ramond potential

originating from the eleven dimensional three form C3. We will not need these for our

analysis of the dynamics of the probe D0-brane which is identified as the vortex soliton of

the mass deformed ABJM theory.

4.3 Probe D0-brane dynamics

The vortex soliton in the mass deformed ABJM theory carries a charge which is an integer

multiple of k, under the U(1) symmetry generated by ∗Fb̃. On the string theory side, this

symmetry is generated by,

J = kQ0 +N Q4 , (4.21)

where Q0 and Q4 are the D0-brane and the D4-brane charges. Hence it is natural to identify

the vortices (which indeed carry k units of J charge, as we saw in the field theory) with

the D0-branes. In the type IIA brane picture, we expect that the mass-deformed ABJM

theory (for k ≫ 1) is realized on dielectric D4-branes arising from a blown-up configuration

of D2-branes. A D0-brane can form a bound state with the dielectric D4-brane and appear

as a vortex soliton in the three dimensional gauge theory6.

The action for a probe D0-brane is given by the sum of the Born-Infeld and of the

Chern-Simons term,

SD0 =

∫

dξa(e−φ
√

−Gaa + Ca) . (4.22)

Let us first consider, a time independent probe D0-brane. Then the only contribution to

the action comes from the Born-Infeld term. We identify this with the mass of the vortex

m = k eΦ̃ h = k
1

√

1 − V 2
1 /h

4
. (4.23)

This quantity is minimized when

V1 =
1

2

(

1
√

x2 + y2
− 1
√

(x− a)2 + y2
+

1
√

(x− b)2 + y2

)

= 0 , (4.24)

6This picture is rather similar to that of flux tubes and vortex strings in N = 1∗ theory [34, 37], which

arise from F1/NS5 and D1/D5 bound states.
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Figure 3. The curve V1 = 0 in the (x, y) plane, where the D0-brane action is minimized. In this

plot we have used the numerical values a = 100, b = 101. At the points where the curve intersects

the x-axis, one of the two S2’s and an S1 shrink to zero size. The point near x = 91 corresponds

to the vortex solution visible in the field theory.

and the value of the soliton mass is

m = k . (4.25)

This matches with the value computed for the mass of the vortex soliton in section 3 (in

our string theory calculation we are working in the dimensionless units with µ = 1).

4.3.1 Probe moduli space

It is fairly clear from (4.24), that the probe action attains its minimum value along a one

dimensional curve in the (x, y) plane. The moduli space for the probe D0-brane is therefore

a six dimensional manifold P obtained by S2 × S̃2 × S1 fibred along the one dimensional

curve given by eq.(4.24), where the S1 is also non-trivially fibred over the two S2’s. The

shape of P projected onto the (x, y) plane is shown in figure 3. For each value of x, with

x̃1 ≤ x ≤ x̃2 ; x̃1 = b−
√

b2 − ab , x̃2 =
√
ab , (4.26)

there exists only one solution to eq. (4.24). Denoting this solution as ỹ(x), we may consider

sections of P at constant x. for generic x̃1 < x < x̃2 the section is five dimensional and

can be parameterized with the five coordinates (η, θ, η̃, θ̃, λ).

The topology of a cross section at a generic point of the segment with x̃1 < x < x̃2

is equivalent to S3 × S2. When x = x̃1 the S3 obtained by fibering S1 over S̃2 shrinks to

zero size. This section of the moduli space is parameterized by the S2 coordinates (η, θ).

At x = x̃2, the S3 obtained by fibering S1 over S2 shrinks to zero and the section is

parametrized by the S̃2 coordinates (η̃, θ̃).

The solitonic vortex solution that we have found in the weakly coupled limit in section

3 maps to the probe D0-brane at x = x̃1 at strong coupling. At this special point the S2 is

finite sized. The dielectric D4-brane wraps this S2 and the probe D0-brane spontaneously

breaks the associated SU(2) isometry. The position of the D0-brane on this S2 corresponds

to the internal orientation of the vortex in the colour-flavour space. At this point, the
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Figure 4. Kinetic terms a1, a2 (in units of k) for each of the sphere components S2, S̃2 as a

function of (x, y).

shrunk S̃2 and S1 imply that the vortex solution explicitly preserves an SU(2) × U(1)

global symmetry. The unbroken SU(2) can be identified as the symmetry that acts on the

doublet (R1, R2) in the field theory.

4.3.2 Moduli space effective action

From the probe D0-brane action it is straighforward to find the vortex effective theory.

The bosonic part of the vortex quantum mechanics is a 1-dimensional sigma model with

target space P, which can be parameterized by the five coordinates (x, η, θ, η̃, θ̃, λ) (the

value of y = ỹ(x) can be found by inverting eq. (4.24)). Allowing a slow time dependence

for the vortex position in P, the the D0-brane action can be expanded out up to second

order in time derivatives

SD0

∣

∣

P
= k + S1 + S2, (4.27)

where the first contribution is the D0-brane/vortex mass, and S1, S2 are the first and

second order derivative terms respectively. The moduli space metric can be read from the

Born-Infeld part of the action, while the first order terms follow from the coupling of the

D0 to the Ramond-Ramond one-form, C1 = kω. The second order kinetic terms are

S2 =
1

2

∫

dt

[

a1

(

η̇2 + (sin2 2η) θ̇2
)

+ a2

(

˙̃η2 + (sin2 2η̃)
˙̃
θ2
)

+ (4.28)

+a3

(

1 +

(

dỹ

dx

)2
)

ẋ2 + a4

(

λ̇− cos 2η

2
θ̇ +

cos 2η̃

2
˙̃θ

)2 ]

.

The coefficients of the second derivative terms evaluated on the moduli space, are

a1 =
1

2
k (1 + 2z)

∣

∣

P
, a2 =

1

2
k (1 − 2z)

∣

∣

P
(4.29)

a3 =
k

4y2
(1 − 4z2)

∣

∣

P
, a4 = k (1 − 4z2)

∣

∣

P
.

A numerical plot of the functions aj is given in figure 4 and 5. The six dimensional moduli

space is a deformation of CP3, preserving an SU(2) × SU(2) × U(1) isometry.
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Figure 5. Kinetic terms a3, a4 (in units of k) as a function of (x, y).

The first order terms in the D0-brane action are

S1 =

∫

dt
(

a1 cos 2η θ̇ + a2 cos 2η̃
˙̃
θ + (a1 − a2)λ̇

)

, (4.30)

which describe the motion of the particle in the presence of k units of magnetic flux

through S2 and S̃2.

We may add a total derivative term to the action and put it in a form where the

physical interpretation becomes manifest,

S1 =

∫

dt
(

(a1 cos 2η − 1) θ̇ + (a2 cos 2η̃ − 1)
˙̃
θ + (a1 − a2)λ̇

)

. (4.31)

Now, it is interesting to look at this action at the point in the (x, y) plane that naturally

corresponds to the S2 moduli space of vortex solitons that we have found at weak coupling.

This is the point (x, y) = (x̃1, 0) or equivalently z = 1
2 . At this point where S̃2 vanishes,

the action is precisely that of a particle moving on S2 with radius
√

k/2, in the presence

of a Dirac monopole connection of strength k,

Lvortex

∣

∣

z= 1

2

=
k

2

[

1

2
(η̇2 + sin2 2η θ̇2) + (cos 2η − 1)θ̇

]

. (4.32)

Note that this is the Dirac monopole connection on the “north pole” patch, and is singular

at the south pole. This is similar to the non-Abelian Chern-Simons vortex discussed in [16].

At the classical level, it appears consistent to identify this as the moduli space action for

the vortex soliton we found at weak coupling since it preserves the same symmetries. It

is interesting that the radius of this sphere is quantized and determined by the Chern-

Simons level k. This also appears to be manifest at weak coupling where the radius of the

fuzzy two-sphere in the Higgs vacuum, in eq.(2.16), after dividing out by a factor of N to

normalize the corrdinates, is proportional to
√
k.

5 Discussion and conclusions

In this paper, we found 1
2 -BPS vortex solitons in the N = 6 mass deformation of

ABJM theory. We verified that they preserve six supercharges. These vortices in the
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Higgs vacuum have internal, non-Abelian, orientational collective coordinates which are

responsible for a CP1 moduli space of solutions. We also obtained the strong coupling

gravity dual of the mass deformed theory and its Higgs vacuum, by performing a Zk

quotient on the solution found in [27, 29]. Probe D0-branes in this background correspond

to the Chern-Simons vortices. We found that the probe D0-brane exhibits a much larger

moduli space than expected for the classical vortex soliton. Within this larger moduli

space we could however identify a section which coincides with the classical moduli space

of solutions originating from the breaking of a colour-flavour locked symmetry. The

dynamics on this section is that of a point particle moving on a sphere of radius
√

k/2

coupled to a Dirac monopole field of strength k.

The enlarged moduli space P at strong coupling leaves us with a puzzle. We think that

the extra four dimensions in the moduli space are an artifact of the strong coupling limit and

of the supergravity approximation. Another possible explanation could be that we have not

found the most general vortex solution because our ansatz was not sufficiently general. We

believe that the latter explanation is unlikely - it appears difficult to arrive at a reasonable

ansatz that could realize this possibility. Also, as discussed in section (3.5), the number of

fermionic zero modes (which has been computed for N = 2 in appendix A) does not suggest

the existence of extra bosonic zero modes. Another particularly interesting feature of our

solution, which introduces further subtleties, is that the colour-flavour locked symmetry

actually involves a locking between an SU(2) R-symmetry and the global gauge rotations.

This is unusual in that although a static vortex solution preserves six supercharges, an

adiabatic variation of the internal orientational modulus preserves only two supercharges.

The full implications of this for the vortex effective theory also need to be understood.
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A Fermionic zero modes for N = 2

In this appendix we compute the number of fermionic zero modes on the vortex background

for N = 2. The equations for the two sectors ξ and χ decouple from each other and can

be analyzed separately. We find four real zero modes in each sector.

A.1 ξ sector

On the vortex background, the fermionic part of the action for this sector can be written as:

− iTr(ξ†)IγµDµξI +
2πi

k
Tr

(

(−1
kµ

2π
−Q†

1Q1 +Q†
2Q2)(ξ

†
1ξ1)+ (A.1)

+

(

− 1
kµ

2π
+Q†

1Q1 −Q†
2Q2

)

(ξ†2ξ2) − 2Q†
1Q2(ξ

†
1ξ2) − 2Q†

2Q1(ξ
†
2ξ1)+

+ξ†1(Q1Q
†
1 −Q2Q

†
2)ξ1 − ξ†2(Q1Q

†
1 −Q2Q

†
2)ξ2 + 2ξ†1(Q2Q

†
1)ξ2 + 2ξ†2(Q1Q

†
2)ξ1

)

.
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The following Dirac equations are found:

−γµDµξ1 +
2π

k

(

ξ1

(

− 1
kµ

2π
−Q†

1Q1+Q†
2Q2

)

−2ξ2Q
†
1Q2+(Q1Q

†
1−Q2Q

†
2)ξ1+2Q2Q

†
1ξ2

)

=0 ,

−γµDµξ2+
2π

k

(

ξ2

(

− 1
kµ

2π
+Q†

1Q1−Q†
2Q2

)

−2ξ1Q
†
2Q1+(Q2Q

†
2−Q1Q

†
1)ξ2+2Q1Q

†
2ξ1

)

=0 .

Let us write explicitly the equations for N = 2. The following notation is used:

ξ1 =

(

ξ11 ξ12
ξ21 ξ22

)

, ξ2 =

(

ξ̃11 ξ̃12
ξ̃21 ξ̃22

)

. (A.2)

We get two systems of two coupled equations and four decoupled equations:

− γµ∂µξ11 − iγ0 f ′

2rµ
ξ11 − µ(ξ11(1 − ψ2) + 2eiϕψξ̃12) = 0 , (A.3)

−γµ∂µξ̃12 − i(1 − f)
xγ2 − yγ1

r2
ξ̃12 − 2µe−iϕψξ11 = 0 .

−γµ∂µξ̃22 + iγ0 f ′

2rµ
ξ̃22 − µ(ξ̃22(1 − ψ2) + 2e−iϕψξ21) = 0 , (A.4)

−γµ∂µξ21 + i(1 − f)
xγ2 − yγ1

r2
ξ21 − 2µeiϕψξ̃22 = 0 .

−γµ∂µξ22 + iγ0
f ′

2rµ
ξ22 − µ(1 + ψ2)ξ22 = 0 , (A.5)

−γµ∂µξ̃11 − iγ0 f ′

2rµ
ξ̃11 − µ(1 + ψ2)ξ̃11 = 0 , (A.6)

−γµ∂µξ12 − i(1 − f)
xγ2 − yγ1

r2
ξ12 − 2µξ12 = 0 , (A.7)

−γµ∂µξ̃21 + i(1 − f)
xγ2 − yγ1

r2
ξ̃21 − 2µξ̃21 = 0 . (A.8)

It is straightforward to check that eqs. (A.5), (A.6) have no square-integrable solutions.

Using the BPS equations, we get the system:

− 2µξ+22 + (−∂1 + i∂2)ξ
−
22 = 0 (−∂1 − i∂2)ξ

+
22 − 2µψ2ξ−22 = 0 , (A.9)

then acting with (∂1 + i∂2) on the first equation we get (∂2
1 + ∂2

2)ξ−22 + 4µ2ψ2ξ−22 = 0, which

has no square-integrable solutions. Eqs. (A.7), (A.8) also does not give any zero modes,

they correspond to a 2-dimensional fermion with a Dirac mass term in the background of

a vortex (this case is studied in [52]).

Let us go back to the two systems (A.3), (A.4). They are trivially related by a complex

conjugation. Let us use the variables η = ξ11, ξ̃
∗
22 and λ = ξ̃12, ξ

∗
21:

(

−∂2 −∂1

−∂1 ∂2

)(

η+

η−

)

− f ′

2rµ

(

0 i

−i 0

)(

η+

η−

)

−µ(1−ψ2)

(

η+

η−

)

−2µψeiϕ

(

λ+

λ−

)

= 0 ,

(

−∂2 −∂1

−∂1 ∂2

)(

λ+

λ−

)

− i
1 − f

r

(

x/r −y/r
−y/r −x/r

)(

λ+

λ−

)

− 2µψe−iϕ

(

η+

η−

)

= 0 . (A.10)
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After a change of the γ matrices basis, the equations become:
(

0 −∂1−i∂2

−∂1+i∂2 0

)(

η+

η−

)

− f ′

2rµ

(

−1 0

0 1

)(

η+

η−

)

−µ(1−ψ2)

(

η+

η−

)

−2µψeiϕ

(

λ+

λ−

)

= 0 ,

(

0 −∂1 − i∂2

−∂1 + i∂2 0

)(

λ+

λ−

)

+
1 − f

r

(

0 eiϕ

−e−iϕ 0

)(

λ+

λ−

)

− 2µψe−iϕ

(

η+

η−

)

= 0 .

(A.11)

The problem is reduced to the one of finding the kernel of the operator:

D =











−∂1 + i∂2 −2µψeiϕ 0 0

−2µψe−iϕ −∂1 − i∂2 + 1−f
r eiϕ 0 0

2µ(ψ2 − 1) 0 −∂1 − i∂2 −2µψeiϕ

0 0 −2µψe−iϕ −(∂1 − i∂2) − 1−f
r e−iϕ











, (A.12)

acting on (η+, λ−, η−, λ+)t. Let us introduce the ausiliary operators

D1 =

(

−∂1 + i∂2 −2µψeiϕ

−2µψe−iϕ −∂1 − i∂2 + 1−f
r eiϕ

)

, (A.13)

D2 =

(

−∂1 − i∂2 −2µψeiϕ

−2µψe−iϕ −(∂1 − i∂2) − 1−f
r e−iϕ

)

.

A computation with the index theorem [46, 53] tell us that

dim(kernelD) − dim(kernelD†) = 0 .

The operators D1 and D†
2 have a trivial kernel; index theorem then can be used to show

that D†
1 and D2 have a kernel with real dimension two. This shows that

dim(kernelD) = dim(kernelD†) = 2 .

A related calculation can be found in [54]. We get 4 fermionic zero modes from the ξ sector.

A.2 χ sector

The relevant fermionic action is:

− iTr(χ†)IγµDµχI +
2πi

k
Tr

((

Q†
1Q1 +Q†

2Q2 + 1
kµ

2π

)

(χ†
1χ1 + χ†

2χ2)− (A.14)

−χ†
1(Q1Q

†
1 +Q2Q

†
2)χ1 − χ†

2(Q1Q
†
1 +Q2Q

†
2)χ2 +Q†

1χ2Q
†
2χ1 −Q†

1χ1Q
†
2χ2−

−Q†
2χ2Q

†
1χ1 +Q†

2χ1Q
†
1χ2 −Q1χ

†
2Q2χ

†
1 +Q1χ

†
1Q2χ

†
2 +Q2χ

†
2Q1χ

†
1 −Q2χ

†
1Q1χ

†
2

)

.

The Dirac equations follow:

−γµDµχ1+
2π

k

(

χ1

(

1
kµ

2π
+Q†

1Q1+Q†
2Q2

)

−(Q1Q
†
1+Q2Q

†
2)χ1+2Q2.χ

†
2.Q1−2Q1.χ

†
2.Q2

)

= 0

−γµDµχ2+
2π

k

(

χ2

(

1
kµ

2π
+Q†

1Q1+Q†
2Q2

)

−(Q1Q
†
1+Q2Q

†
2)χ2−2Q2.χ

†
1.Q1+2Q1.χ

†
1.Q2

)

= 0
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Let us again specialize to N = 2. The following notation is used:

χ1 =

(

χ11 χ12

χ21 χ22

)

, χ2 =

(

χ̃11 χ̃12

χ̃21 χ̃22

)

. (A.15)

The details of the calculations are rather similar to the ones for the ξ sector. We get two

systems of two coupled equations and four decoupled equations:

− γµ∂µχ22 + iγ0 f ′

2rµ
χ22 + µ((1 − ψ2)χ22 + 2ψeiϕχ̃∗

21) = 0 , (A.16)

−γµ∂µχ̃21 + i(1 − f)
xγ2 − yγ1

r2
χ̃21 + 2µψeiϕχ∗

22 = 0 .

−γµ∂µχ̃22 + iγ0 f ′

2rµ
χ̃22 + µ((1 − ψ2)χ̃22 − 2ψeiϕχ∗

21) = 0 . (A.17)

−γµ∂µχ21 + i(1 − f)
xγ2 − yγ1

r2
χ21 − 2µψeiϕχ̃∗

22 = 0 ,

−γµ∂µχ11 − iγ0 f ′

2rµ
χ11 + µ(1 + ψ2)χ11 = 0 , (A.18)

−γµ∂µχ̃11 − iγ0 f ′

2rµ
χ̃11 + µ(1 + ψ2)χ̃11 = 0 , (A.19)

−γµ∂µχ12 − i(1 − f)
xγ2 − yγ1

r2
χ12 + 2µχ12 = 0 , (A.20)

−γµ∂µχ̃12 − i(1 − f)
xγ2 − yγ1

r2
χ̃12 + 2µχ̃12 = 0 . (A.21)

The four decoupled equations (A.18)–(A.21) have no square-integrable solutions.

The two systems (A.16) and (A.17) are equivalent. Let us use the variables η = χ22, χ̃22

and λ = χ̃∗
21, χ

∗
21:

(

−∂2 −∂1

−∂1 ∂2

)(

η+

η−

)

+
f ′

2rµ

(

0 i

−i 0

)(

η+

η−

)

+µ(1−ψ2)

(

η+

η−

)

± 2µψeiϕ

(

λ+

λ−

)

= 0 ,

(

−∂2 −∂1

−∂1 ∂2

)(

λ+

λ−

)

− i
1 − f

r

(

x/r −y/r
−y/r −x/r

)(

λ+

λ−

)

± 2µψe−iϕ

(

η+

η−

)

= 0 . (A.22)

Changing the γ matrices basis:
(

0 −∂1−i∂2

−∂1+i∂2 0

)(

η+

η−

)

− f ′

2rµ

(

1 0

0 −1

)(

η+

η−

)

+µ(1−ψ2)

(

η+

η−

)

± 2µψeiϕ

(

λ+

λ−

)

= 0 ,

(

0 −∂1 − i∂2

−∂1 + i∂2 0

)(

λ+

λ−

)

+
1 − f

r

(

0 eiϕ

−e−iϕ 0

)(

λ+

λ−

)

± 2µψe−iϕ

(

η+

η−

)

= 0 .

(A.23)

The problem is reduced to the one of finding the kernel of the following operator:

D =











−∂1 + i∂2 ±2µψeiϕ 0 0

±2µψe−iϕ −∂1 − i∂2 + 1−f
r eiϕ 0 0

2µ(1 − ψ2) 0 −∂1 − i∂2 ±2µψeiϕ

0 0 ±2µψe−iϕ −(∂1 − i∂2) − 1−f
r e−iϕ











. (A.24)
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The following ausiliary operators are introduced:

D1 =

(

−∂1 + i∂2 ±2µψeiϕ

±2µψe−iϕ −∂1 − i∂2 + 1−f
r eiϕ

)

. (A.25)

D2 =

(

−∂1 − i∂2 ±2µψeiϕ

±2µψe−iϕ −(∂1 − i∂2) − 1−f
r e−iϕ

)

.

A computation with the index theorem also tell us that

dim(kernelD) − dim(kernelD†) = 0 .

The operators D1 and D†
2 have a trivial kernel; index theorem then can be used to show

that D†
1 and D2 have a kernel with real dimension two. We get a total of four zero modes

from the χ sector.
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